Check for
Updates

Sensor Fusion on the Edge:
Initial Experiments in the EdgeServe System

Ted Shaowang Xi Liang Sanjay Krishnan
University of Chicago University of Chicago University of Chicago
USA USA USA
swjz@uchicago.edu xiliang@uchicago.edu skr@uchicago.edu
ABSTRACT as in control systems, industrial monitoring, and mobile applica-

Due to latency and privacy concerns, we are witnessing the rise of
edge computing, where computation is placed close to the point of
data collection to facilitate low-latency decision making. However,
we believe that a very important class of sensor fusion applications,
in which data generated in a disaggregated way has to be combined
to make a decision, are not well understood in the context of edge
computing. The necessary data needs to be in “the right place
at the right time”, making intra-edge communication a significant
bottleneck. In prior work, we proposed an edge-based model serving
system, called EdgeServe, that not only manages a machine learning
inference service, but also orchestrates data movement between
nodes on an edge network. In this paper, we evaluate trade-offs
in temporal synchronization between data sources, and present
initial experiments that study how different knobs can affect the
performance of sensor fusion applications.

CCS CONCEPTS

« Computer systems organization — Distributed architec-
tures; Sensor networks.

KEYWORDS

federated inference, edge computing

ACM Reference Format:

Ted Shaowang, Xi Liang, and Sanjay Krishnan. 2022. Sensor Fusion on the
Edge: Initial Experiments in the EdgeServe System. In Big Data in Emergent
Distributed Environments (BiDEDE’22), June 12, 2022, Philadelphia, PA, USA.
ACM, New York, NY, USA, 7 pages. https://doi.org/10.1145/3530050.3532924

1 INTRODUCTION

Serving predictions from machine learning models is a crucial part
of modern real-time decision systems. The basic idea is to inter-
face trained machine learning models (e.g., a neural network or
an SVM) to software clients who can use those predictions (e.g., a
fraud detection framework). Current examples include Clipper [4],
TensorFlow Serving [9], and InferLine [3], were designed as cloud
services. As the uses for machine learning have evolved towards in-
creasingly latency and communication-sensitive applications, such

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9346-1/22/06...$15.00
https://doi.org/10.1145/3530050.3532924

tions, there has been a steady trend towards moving model-serving
to resources closer to the point of data collection. We collectively
call these computation resources “the edge”. The primary focus of
model serving on the edge has been to design reduced-size models
that can efficiently be deployed on lower-powered devices [5-7, 13].

Simply reducing the computational footprint of each prediction
served is only part of the problem in emerging edge applications.
Sensor fusion is the process of combining sensor data or data derived
from disparate sources. For example, in a warehouse analytics ex-
ample, one might combine data from multiple cameras to track the
movement of a package through the warehouse. Or, in a self-driving
car, one might bring together inputs from multiple radar sensors,
lidar sensors, and cameras to form a single model or image of the
environment around a vehicle. In general, all such examples have a
common network topology, where data are collected on different
endpoints and have to be combined, or “fusion”, somewhere in an
edge network before a decision can be made. Furthermore, the data
must be temporally synchronized when it is combined so that tem-
porally corresponding observations from the different sensors are
linked, i.e., the final model integrates data from the same “timestep”.
This need for synchronized fusion creates a very interesting pair
of coupled systems bottlenecks: (1) edge-based sensor fusion tasks
can generate a large amount of intra-edge communication creating
network contention and saturating bandwidth constraints, (2) jitter
in the network can force buffering to ensure that observations are
synchronized.

The consequence of (1) and (2) is an increased effective decision
latency which is not desirable in edge computing. If one relaxes
the need for temporal synchronization, certain types of applica-
tions can very quickly degrade in terms of accuracy. Consider the
warehouse asset tracking example above. Imagine, that we wanted
to triangulate the position of an asset from multiple cameras us-
ing a standard stereo correspondence algorithm. In Section 5, we
constructed experiments where two cameras connected over an
Ethernet network simultaneously tracked a box with a QR code and
compared the tracking results to a centralized baseline. We found
that temporal synchronization on its own introduced errors of up
to 30 pixels in tracking, which would compound the real-world
distance for tracking objects relatively far away from the camera.
Thus, even over high-bandwidth networks, temporal synchroniza-
tion is a major challenge, which only becomes worse if the network
is more constrained.

In prior work, we proposed an edge-based model serving system,
called EdgeServe [12], that not only manages a machine learning
inference service but also orchestrates data movement between
nodes on an edge network. EdgeServe provides a message broker

https://orcid.org/0000-0002-7353-3786
https://doi.org/10.1145/3530050.3532924
https://doi.org/10.1145/3530050.3532924
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3530050.3532924&domain=pdf&date_stamp=2022-06-12

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

service that allows producers to push sensor data into a topic,
and consumers to listen to data on those topics. This interface
is similar to that of ROS [10]. EdgeServe automatically reasons
about a network of heterogeneous and disaggregated resources. The
system automatically deploys models (consumers of data) to the
specified nodes. This workshop paper deep dives into sensor fusion
tasks in EdgeServe and illustrates many of the counter-intuitive
tradeoffs between latency, communication, and mitigating temporal
synchronization errors. The experiments in Section 5, while simple,
illustrate 3 key lessons that we hope to use to inform the next
iteration of EdgeServe.

o Lesson 1. Lowering the data resolution can improve accuracy
in sensor fusion tasks that are sensitive to temporal synchro-
nization. Counter-intuitively, degrading the quality of the
data collected from the sensors can lower the frequency of
incoming data, and thus reduce misalignment caused by
variability in processing, communication, and queuing. This
actually leads to more accurate final results than if high-
resolution data were used. (See discussions in Section 4.2, 4.4
and experiments in Section 5.5.1.)

e Lesson 2. Placing computation as close to the data source as

possible is not always desirable. It is a natural thought that

moving inference closer to the point of data collection is
desirable in edge computing. While this approach might sig-
nificantly reduce latency, it can introduce additional errors
due to temporal synchronization. A model can run faster for
some data points but slower for other data points, and this
variability can cause misalignment between sensors. (See

discussions in Section 4.3 and experiments in Section 5.5.2.)

Lesson 3. Eager data movement can create points of contention

on the message broker. We propose a lazy approach that

simply sends headers to a centralized message broker and
data are lazily transferred in a peer-to-peer fashion. While
this adds an overhead it cuts down a significant source of
variability in queuing if there is contention on the message
broker. (See discussions in Section 4.1 and experiments in
Section 5.5.3.)

2 EDGESERVE OVERVIEW

The primary goal of EdgeServe is to facilitate machine learning
inference on the edge where data sources may have to be routed
through the network before prediction. Unlike existing model-serving
systems, EdgeServe also orchestrates how data moves through the
edge network. This architecture is described in prior work [12].

Sensor Fusion and Multi-modal Prediction. A machine learn-
ing model is multi-modal if it requires data from more than one
data source. For example, a model that leverages multiple cam-
eras for tracking a box in a warehouse. Or, a model that integrates
information from multiple sensors to detect room occupancy.
Fundamentally, real-time sensor fusion requires temporally cor-
responding data to be “in the same place at the same time” some-
where in an edge network. EdgeServe is a system designed to ad-
dress this constraint by ensuring that right data is routed to each
model. Figure 1 illustrates the concept of temporal synchronization.
Ideally, sensor measurements from exactly the same time point
should be paired during multi-modal inference (Figure 1A-B). Since

Shaowang and Liang, et al.

(A) Temporally Synchronized

o — QOO O O—__
/’

(B) Temporally Synchronized

o~ QOO O O—__
/

Sensor 2 ——

Model(@)

Sensor 2 ——

Model(@)

C) Not Temporally Synchronized

Sensor 1 —— @ @ @ \

Model(@)

Sensor 2 ——

Figure 1: (A) Temporal synchronization means that obser-
vations created at the same (or roughly the same) time are
paired together during multimodal inference. (B) The same
idea can be extended to windows of data if different sensors
produce data at different rates. (C) An example of synchro-
nization breaking due to an irregular data processing sched-
ule.

in any real distributed sensing system this is impossible, there are
only degrees of synchronization that can be achieved (i.e., how sim-
ilar are the timestamps of the observations from different sources).

2.1 Basics and Workflow

We assume that each edge node is connected to others on a TCP/IP
network (either directly or via a switched network). A subset of
these nodes are physically connected to data sources (e.g. video
cameras, sensors, and other data streams). Every node maintains
a globally-synchronized catalog of data streams that are locally
collected. In EdgeServe, models are functions that are repeatedly
applied to fixed windows of data. Every model in EdgeServe has
locality constraints, which describe where a model’s prediction
results have to be delivered. For example, one could require that all
predictions are delivered to node1. Or, we could require that either
nodel or node2 has the required output.

Unlike existing model-serving systems that work asynchronously,
EdgeServe works in a push-based model, where the arrival of
each new data batch (defined by the user’s inference task) triggers
re-evaluation. These tasks subscribe to a message-broker service,
which informs each node about new data. Each model can consume
one or more sources of data and yield a new stream (a prediction).
Since there is a global message-broker service, the output of models
can be streamed to other models as well. Models that consume mul-
tiple streams of data induce additional locality constraints, where
data streams from multiple nodes may have to be aggregated in
a central place. For example, an activity recognition model that
requires video, audio, and network data must aggregate all of the
data in a single place somewhere in the network. At a high level,
EdgeServe combines a publication-subscription system to facilitate

Sensor Fusion on the Edge:
Initial Experiments in the EdgeServe System

communication between multiple model-serving nodes on a net-
work. To the best of our knowledge, such a system does not exist
in part due to the challenges in routing, scheduling, and placement.
The key system goal of EdgeServe is to provide a centralized control
plane to find placement, routing decisions, and model partitioning
decisions that satisfy locality and hardware constraints.

2.2 Metrics

The main performance metric that we care about is timeliness, which
is the time delay between data arrival and the prediction results
arriving at the appropriate node in the edge network (independent
of exactly where and how EdgeServe chose to execute that process).

Time-to-Decision (Timeliness). Unlike existing model serving sys-
tems where predictions are triggered by client requests, EdgeServe
will continuously process predictions over streams of incoming
data. Therefore, the concept of “latency” is a little more compli-
cated in this setting. Accordingly, we define a new metric called
timeliness, which is the gap between the time at which the data
arrived and when a prediction was issued. The start time is defined
as the time point at which all of the relevant data for a particular
prediction is available somewhere on the network, and the end time
is the time at which the prediction is issued and communicated to
the appropriate edge node that can use the prediction.

The focus on model-serving makes the design of EdgeServe par-
ticularly interesting, because optimization decisions that improve
the timeliness of predictions may affect their accuracy:

(1) Prediction Accuracy (Accuracy). We also care about the accu-
racy of the predictions that are made, or the gap between the
prediction of a class or a continuous label and (hypothetical)
ground-truth.

(2) Robustness to Failure (Robustness). Finally, it is also important
to consider robustness to network and node failures. These
failures can affect both the placement of computation and
the availability of source data. Robustness is measured in
terms of the number and type of edge nodes that can be lost
while still issuing a prediction.

All three of these metrics have both systems and machine learning
implications. For example, there are systems solutions to improving
timeliness through batching and locality, but there are also machine
learning solutions where different model types have latency char-
acteristics. Similarly, systems techniques like replication can help
tolerate failures, but robust machine learning techniques can also
allow for issuing predictions even if some of the features are lost.

2.3 Implementation

To better address the aforementioned challenges in routing, sched-
uling, and placement, we design our system with the following
principles in mind.

2.3.1 Declarative specification of the system. We provide a user
interface for the user to configure the system in a declarative man-
ner. Users can specify the topology of the network, e.g., which
nodes are data sources, which nodes are edge nodes and how are
they connected; the tasks that are to be processed, e.g., which data
sources should be combined and which model should be used for

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

h ul
Task — Tasks Optimizer

Generator ‘[

Header—I+ Message Broker ‘
. —/ - Task . Edge Nodes

]]

‘0—Config— '

Code
Manager

+———Code—

.1

Data Sources .

Pavilond
Paytoad

Figure 2: Architecture of the EdgeServe system.

processing; and the objectives of the system, e.g., should the system
aim for better timeliness or better accuracy.

2.3.2 Declarative serving and processing. The challenging decision-
making for the underlying routing, scheduling, and placement deci-
sions should be hidden from the user and automatically determined
by an optimizer given user-specified network topology, task speci-
fication, and objective.

2.3.3 Efficient communication. A central message broker is used to
relay messages among the optimizer, the data source, and the edge
nodes. Unlike other systems that transfer the entire data payload
using a message broker, in our system, only the header of the data
is distributed to the edge nodes and the payload is lazily accessed
on demand by the edge nodes that are responsible for processing
the payload.

2.3.4 Extensible tasks. A task generator is built to use some of the
user input to generate tasks that contain a unified interface used
by the edge nodes. This can decouple the optimizer from the user
configuration which makes it easy to support new types of tasks.
A code manager is also integrated to serve the same purpose, by
exposing APIs for edge nodes to access the right code or model
used by a task, the code can be white-boxed (Python code) or even
black-boxed (e.g., a Docker container).

2.4 Example Execution

Let’s consider the warehouse asset tracking example in the intro-
duction. There are three streams of data: audio, video, and network
traffic. Audio and video are collected on node1 (an Intel Video Pro-
cessing Embedded System) and network traffic is collected on node2
(a programmable wireless access point). We have a model which
is a neural network that requires all three data sources to predict
ongoing activities in the warehouse. To issue such predictions, the
system could create a data flow (via publication and subscription)
that repeatedly transfers raw data from node2 to node1, and host
a comprehensive model on node1. Alternatively, it could also fea-
turize the network traffic data locally on node2 and only transfer
pre-processed features to node1. node1 applies a pooling method
to issue a prediction based on features from multiple sources. This

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

allows the user to combine the sources of data for a richer predic-
tion, as well as leverage the specialized prediction hardware on
both nodes.

3 RELATED WORK

Current machine learning model serving systems including Clip-
per [4], TensorFlow Serving [9], and InferLine [3] all assume that
the user has manually programmed all necessary data movement.
Recent systems have begun to realize the underappreciated problem
of data movement and communication-intensive aspects of modern
AT applications, but have yet to address the trade-offs in tempo-
ral synchronization between different data sources when they do
not arrive at the same time. For example, Hoplite [14] generates
data transfer schedules specifically for asynchronous collective
communication (e.g., broadcast, reduce) operations in a task-based
framework. [8, 11]

Traditional relational stream processing systems, e.g., [2], have
very strict requirements for temporal synchronization where they
model such an operation as a temporal join. These systems will
buffer data, indefinitely if needed, to ensure that corresponding
observations are properly linked. While desirable for relation query
processing, this approach is excessive in machine learning appli-
cations which have to tolerate some level of inaccuracy anyways.
Moreover, multi-modal machine learning inference usually involves
data sources generated at different rates. In this setting, a looser
level of synchronization would be beneficial to the system and
improve performance.

In the context of sensing, ROS (Robot Operating System) [10]
is an open-source framework designed for robotics research. It
incorporates an algorithm called ApproximateTime that tries to
match messages coming on different topics at different timestamps.
This algorithm can drop messages on certain topics if they arrive too
frequently, but does not use any message more than once. In other
words, if one sensor sends data very infrequently, the algorithm
will have to wait and drop messages from all other sensors until
it sees a new message from the low-frequency sensor to issue a
match. On top of that, such a wait can be harmful to end-to-end
timeliness and accuracy, especially in a synchronization-sensitive
scenario where high-frequency information is lost. If we assume
that temporal correlation exists in sensor data, an alternative to
this algorithm would be to reuse the last known value from the
low-frequency sensor and match it with other sensors when they
are ready.

4 TRADE-OFFS IN TEMPORAL
SYNCHRONIZATION

In this section, we evaluate variable control of temporal synchro-
nization in EdgeServe by illustrating how different knobs might
affect timeliness and synchronization errors. Our key question here
is, how do we loose our synchronization constraints to an extent
that we are still able to make accurate and timely inferences?

4.1 Knob 1. Time Interval for Message Matching

The message broker has the privilege of retaining a message until
it receives matching messages from other sensors, leaving room for
a matching algorithm like the one in ROS. The effect of such forced

Shaowang and Liang, et al.

synchronization on the message broker side heavily depends on
a reasonable time interval between predictions. If the time inter-
val is too short, such synchronization can be ineffective without
improving accuracys; if the time interval is too long, potential long
waits can stretch end-to-end timeliness while harming accuracy
due to lost high-frequency information in between. Finding such
a task-specific time interval can be challenging and tedious for
humans and we need a system to automate this process. In order
for such a system like ROS to implement a matching algorithm, it
also has to eagerly queue up messages on the message broker side,
which can face contention when such messages are large in size.
Experiments in Sec. 5.5.3 show how such contention affects latency.
We show that a lazy method of message passing can significantly
mitigate the effects of contention.

4.2 Knob 2. Down-sampling

Down-sampling, or temporally sampling the data from each sen-
sor, can drastically improve end-to-end timeliness by reducing
data transfer when communication is costly for the task. In down-
sampling, there is a rate-limit on how much data each data source
produces. The consumer can still predict at a faster rate by using
a last known observation from a source if needed. Not only does
down-sampling reduce computation and communication, it also
increases the time between messages which allows the system to
tolerate more variability (and thus better temporal synchronization).
So, the basic tradeoff is whether the loss in accuracy due to down-
sampling is worth the better synchronization. Interestingly enough,
the answer seems to be “sometimes”. Experiments in Sec. 5.5.1 show
how down-sampling affects latency and accuracy.

4.3 Knob 3. Compute Placement

It seems a good idea to place computation closer to the point of
data collection, at least from the perspective of improving end-
to-end timeliness for communication-intensive tasks. However, in
real-world use cases, the latency of such computation varies across
nodes and can be very hard to predict in advance. Such variability
in latency can become a new source of synchronization problem
and result in lower accuracy. Experiments in Sec. 5.5.2 show how
compute placement affects latency and accuracy.

4.4 Knob 4. Lossy Compression

Similar to down-sampling, lossy compression also affects synchro-
nization. Compression can also significantly reduce file size and
ease the burden of communication between nodes, improving end-
to-end timeliness for communication-intensive tasks. Smaller net-
work payloads are less susceptible to network jitter. Furthermore,
compression requires some non-trivial computation and acts as a
rate-limit on the data source side, much in the same way down-
sampling does. Again, if the consumer wishes to predict faster than
this rate-limited source the last-known observation can be used. Ex-
periments in Sec. 5.5.1 show how lossy compression affects latency
and accuracy.

Sensor Fusion on the Edge:
Initial Experiments in the EdgeServe System

5 EXPERIMENTS: MULTI-CAMERA
TRACKING

Our goal for this paper is to simulate a synchronization sensitive
task and demonstrate the trade-off between latency, accuracy and
communication. In order to achieve this goal, we set up a QR code
detector where two webcams capture the same QR code from differ-
ent positions. We move the physical position of the QR code along
a horizontal axis and observe the QR code positions detected by
both cameras. We compare the trajectory of positions to a central-
ized baseline where both cameras collect data on the same node to
evaluate accuracy.

5.1 Hardware Setup

Our hardware setup consists of two 1080p webcams and four Intel
Skylake NUC computers, each equipped with an Intel Core i3-
6100U CPU, 16 GB memory and M.2 SSD. In a centralized setting
(Sec. 5.4), only one NUC computer is used and it is connected to both
webcams. In a distributed setting (Sec. 5.5), all four NUC computers
are used: two of them are connected to two webcams respectively
serving as data source nodes, one of them serves as a message broker
and the other NUC serves as the compute node taking input from
data source nodes. All four NUCs are interconnected via 100Mbps
Ethernet.

5.2 Software Setup

We use Apache Pulsar [1] as the message broker to transfer mes-
sages between NUC computers. For small messages such as a 2D
array, we transfer them directly via Pulsar. For larger files such as
images, we create FTP paths for them and transfer those paths in
messages for the compute node to download, saving traffic on the
message broker side. For QR code detection, we use an OpenCV
resolution with two CNN-based Caffe models: an object detection
model to detect the QR code with a bounding box and a super-
resolution model to zoom in the QR code when it is small. Videos
are collected in advance to ensure reproducibility and we simulate
real-time streaming of these videos. All results present the average
values of 3 experiments. All videos used in the following experi-
ments are of 1920x1080 resolution, 5 seconds long at 30 FPS unless
otherwise specified. The size of QR code is about 200x200.

5.3 Metrics and Ground Truth

In this experiment, we define accuracy as pixel-level ‘error’, which is
the difference between ground truth trajectory and the experiments
in both x and y axes in the unit of absolute pixels, averaged over
all frames. The smaller the absolute number of ‘error’, the more
accurate the target experiment is. The ground truth of such offset
is defined as the offset between two videos in a centralized setup
without compression (Table 1(a)-(d)). If there is no QR code detected
from a certain frame in the target experiment, we use the last known
OR code position for that camera. For down-sample experiments,
we up-sample the missing frames with the last known frame when
measuring accuracy as well. We also define latency as the time
period from the timestamp when the first piece of data is transferred
until the timestamp when the prediction for the last piece of data
is issued. Since all of our videos have the same length of 5 seconds,
this metric is a proxy for “timeliness” defined before.

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

‘ Fast movement ‘ Slow movement

a) Memory 9.92s 10.52s

b) Disk (uncompressed) | 13.53s (+3.61s, 36%)

) Disk (jpeg)
Table 1: Latency from a centralized compute: (a)-(c) involve
the same task with different level of disk access. Numbers
and percentages in parentheses are relative to (a).

JPEG accuracy ‘ Fast movement ‘ Slow movement
0.5931px ‘ 0.0050px

X-axis
y-axis 0.3868px 0.0022px

Table 2: Errors introduced by JPEG compression.

5.4 Centralized Compute

As a baseline, we consider a scenario where the computation is
centralized. There is no communication or synchronization issue
in this case. Therefore, we treat the result from this run as ground
truth and running time as a baseline. We demonstrate the intrin-
sic characteristics between fast and slow movements of the QR
code and explore the latency component of disk I/O to get a better
understanding of the task.

Table 1 shows the latency from centralized multi-camera track-
ing example: (a) both streams are captured and passed to EdgeServe
in memory; (b) the camera streams are stored to disk in an un-
compressed format and incrementally retrieved by EdgeServe; and
(c) the camera streams are stored to disk in a JPEG format and
incrementally retrieved by EdgeServe.

First, we look at the differences between fast movement and slow
movement columns. When we move the QR code too fast, quite a
few frames are too blurry for the detector to recognize anything
so the decoding step is skipped. Therefore, it takes a little shorter
time to finish the computation in fast movement cases. Second,
we compare Table 1(b) against (a) to measure the latency of disk
I/O. Specifically, reading and writing image files from/to disk takes
about the same amount of time and they add up to about 30-40% of
compute time. We see from Table 1(c) that disk I/O with JPEG runs
significantly longer because extra time is spent on compression and
decompression.

It should be noted that images in BMP format are lossless and
the size of each BMP file is about 6 MB. JPEG compression is lossy
but could significantly reduce file size to 200-300 KB. The accuracy
of JPEG compression is shown in Table 2. In both axes, we see an
average error of less than 1 pixel, which is nearly perfect. Fast move-
ment is worse because some blurry frames that are recognizable as
BMP files are no longer recognizable after JPEG compression.

5.5 Distributed Edge Cluster

As described in Sec. 5.1, we construct an Edge cluster and do the
same QR code detection task, where data is collected on different
nodes. We build a queue for each data source at the message broker
and they are aggregated to make a prediction as soon as there is new
data coming in from any data source. A data point may be reused to
make a joint prediction if it is still the latest from an infrequent data

13.75s (+3.23s, 31%)
29.76s (+19.84s, 200%) | 31.16s (+20.64s, 196%)

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

Shaowang and Liang, et al.

Size Time X-axis error | y-axis error ‘ Rate limit (up /down) ‘ Time
3m 11s Lazy (ours) No limit 3m 10s
BMP (30 FPS) | 1.7 GB (om a1s) | 228402p% | 41812px Lazy (ours) 1 Mbps / 1 Mbps m 124
1m 4s Eager (similar to ROS) | No limit 3m 16s
BMP (10 FPS) | 593 MB (53.8s) 7:3501px 1.7942px Eager (similar to ROS) | 20 Mbps / 20 Mbps 21m 32s
BMP (5FPS) | 297 MB (32271 1Ss) 29.4458px 1.5753px Table 5: Latency with network bandwidth limits.
49.8s
JPEG (30 FPS) | 72MB | (o 40714px | 0.4754px
JPEG (10 FPS) | 24 MB 16.6s 6.6651px 2.7245px Table 4 shows thz?.t this method improves latency by 33x compared
(2.9s) to BMP (30 FPS) in Table 3.
JPEG (5 FPS) 12 MB 8.2s 29.4797px 1.6021px .However, Endpoint—Plficement methods can be a source of mis-
(1.6s) alignment as well, especially when a model runs faster for some

Table 3: BMP, JPEG and down-sampling comparison. Num-
bers in parentheses are time spent purely on data download,
measured by wget.

Endpoint-Placement ‘ Time ‘ x-axis error | y-axis error

Original 30 FPS 5.79s | 22.4691px 2.7398px
Down-sampled to 10 FPS | 5.93s | 24.7646px 5.6231px
Down-sampled to 5 FPS | 5.55s | 29.5273px 1.7011px

Table 4: Latency and accuracy for Endpoint-Placement.

source. Jitter in the network, variability in processing times, and
queuing delays can introduce extra errors. We compare these errors
to the sub-pixel errors introduced by lossy compression above.

5.5.1 Effect of Down-sampling and Compression on Accuracy. Counter-

intuitively, degrading the quality of the data collected from the
sensors can lead to better results in the distributed setting. We com-
pare compression and effects of down-sampling in Table 3. We find
that down-sampling can almost linearly improve latency because
it directly reduces data transfer. It also forces synchronization on
the data source side to improve accuracy until it reaches a sweet
spot, after which we lose so much information between frames
that accuracy starts to decrease. JPEG compression has a similar
effect of reducing data transfer significantly, which also improves
latency compared to BMP counterparts. Since JPEG compression
takes a while (as shown in Table 1), it acts as a rate limit at the data
source, similar to the down-sampling method, which also forces
synchronization. The accuracy ‘sweet spot’ for JPEG is reached at
the original sampling rate and further down-sampling would only
decrease accuracy.

5.5.2 Compute Placement and Synchronization Errors. 1t is a natural
thought that moving inference closer to the point of data collec-
tion is desirable in edge computing; this is not always the case
in multimodal prediction. Instead of transferring frames over the
network, we could also run the model at data source nodes and only
transfer coordinates over the network. This method makes use of
model parallelism and spare resources on data source nodes to save
communication between data source nodes and compute node(s).
Such an “Endpoint-Placement” method is perfectly suitable for our
use case because we have light models but heavy communication.

data points but slower for other data points. The variability in model
inference latency across nodes can add up to become a synchro-
nization problem and reduces accuracy. In Table 4, we see higher
synchronization errors because of this variability.

5.5.3 Effect of Queuing Strategy. In Sec. 5.2 we described how we
use FTP to transfer large data directly from data source to compute
node and only pass pointers to data over the message broker. This is
especially beneficial when the message broker is busy with network
requests. We simulate a congestion scenario where the network
bandwidth at the message broker is limited and measure the end-to-
end latency of our system versus a ROS-like system that transfers
raw data through a centralized broker. Table 5 shows that our
system is tolerant to slow network bandwidth while transferring
raw frames can be extremely slow when the network is congested.

6 CONCLUSION

In this paper, we discuss trade-offs in temporal synchronization by
showing initial experiments of a multi-camera tracking example
in our EdgeServe system. We find that synchronization errors and
timeliness metrics depend on multiple knobs, as discussed in Sec-
tion 4. We believe this topic is underappreciated and we hope our
findings are useful for future similar systems.

REFERENCES

[1] Apache. 2022. Apache Pulsar. https://pulsar.apache.org/ (visited on March 27,
2022).
Sirish Chandrasekaran and Michael J Franklin. 2003. PSoup: a system for stream-
ing queries over streaming data. The VLDB Journal 12, 2 (2003), 140-156.
Daniel Crankshaw, Gur-Eyal Sela, Xiangxi Mo, Corey Zumar, Ion Stoica, Joseph
Gonzalez, and Alexey Tumanov. 2020. InferLine: latency-aware provisioning and
scaling for prediction serving pipelines. In So0CC "20: ACM Symposium on Cloud
Computing, Virtual Event, USA, October 19-21, 2020, Rodrigo Fonseca, Christina
Delimitrou, and Beng Chin Ooi (Eds.). ACM, 477-491. https://doi.org/10.1145/
3419111.3421285
Daniel Crankshaw, Xin Wang, Giulio Zhou, Michael J. Franklin, Joseph E. Gon-
zalez, and Ion Stoica. 2017. Clipper: A Low-Latency Online Prediction Serving
System. In 14th USENIX Symposium on Networked Systems Design and Imple-
mentation, NSDI 2017, Boston, MA, USA, March 27-29, 2017, Aditya Akella and
Jon Howell (Eds.). USENIX Association, 613-627. https://www.usenix.org/
conference/nsdi17/technical-sessions/presentation/crankshaw
Song Han, Huizi Mao, and William J. Dally. 2016. Deep Compression: Compress-
ing Deep Neural Network with Pruning, Trained Quantization and Huffman
Coding. In 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings.
Chien-Chun Hung, Ganesh Ananthanarayanan, Peter Bodik, Leana Golubchik,
Minlan Yu, Paramvir Bahl, and Matthai Philipose. 2018. Videoedge: Processing
camera streams using hierarchical clusters. In 2018 IEEE/ACM Symposium on
Edge Computing (SEC). IEEE, 115-131.
[7] Sumit Maheshwari, Wuyang Zhang, Ivan Seskar, Yanyong Zhang, and Dipankar
Raychaudhuri. 2019. EdgeDrive: Supporting advanced driver assistance systems

[2

B3

—
=t

[5

G

https://pulsar.apache.org/
https://doi.org/10.1145/3419111.3421285
https://doi.org/10.1145/3419111.3421285
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw
https://www.usenix.org/conference/nsdi17/technical-sessions/presentation/crankshaw

Sensor Fusion on the Edge:
Initial Experiments in the EdgeServe System

8

=

=

[10]

using mobile edge clouds networks. In IEEE INFOCOM 2019-IEEE Conference on
Computer Communications Workshops (INFOCOM WKSHPS). IEEE, 1-6.

Philipp Moritz, Robert Nishihara, Stephanie Wang, Alexey Tumanov, Richard
Liaw, Eric Liang, Melih Elibol, Zongheng Yang, William Paul, Michael I Jordan,
et al. 2018. Ray: A distributed framework for emerging Al applications. In 13th
USENIX Symposium on Operating Systems Design and Implementation (OSDI 18).
561-577.

Christopher Olston, Fangwei Li, Jeremiah Harmsen, Jordan Soyke, Kiril Gorovoy,
Li Lao, Noah Fiedel, Sukriti Ramesh, and Vinu Rajashekhar. 2017. TensorFlow-
Serving: Flexible, High-Performance ML Serving. In Workshop on ML Systems at
NIPS 2017.

Morgan Quigley, Ken Conley, Brian Gerkey, Josh Faust, Tully Foote, Jeremy Leibs,
Rob Wheeler, Andrew Y Ng, et al. 2009. ROS: an open-source Robot Operating
System. In ICRA workshop on open source software, Vol. 3. Kobe, Japan, 5.

[11

[12

[13

[14

]

BiDEDE’22, June 12, 2022, Philadelphia, PA, USA

Matthew Rocklin. 2015. Dask: Parallel computation with blocked algorithms and
task scheduling. In Proceedings of the 14th python in science conference, Vol. 130.
Citeseer, 136.

Ted Shaowang, Nilesh Jain, Dennis D Matthews, and Sanjay Krishnan. 2021.
Declarative data serving: the future of machine learning inference on the edge.
Proceedings of the VLDB Endowment 14, 11 (2021), 2555-2562.

Xiao Zeng, Biyi Fang, Haichen Shen, and Mi Zhang. 2020. Distream: scaling
live video analytics with workload-adaptive distributed edge intelligence. In
Proceedings of the 18th Conference on Embedded Networked Sensor Systems. 409~
421.

Siyuan Zhuang, Zhuohan Li, Danyang Zhuo, Stephanie Wang, Eric Liang, Robert
Nishihara, Philipp Moritz, and Ion Stoica. 2021. Hoplite: efficient and fault-
tolerant collective communication for task-based distributed systems. In Proceed-
ings of the 2021 ACM SIGCOMM 2021 Conference. 641-656.

	Abstract
	1 Introduction
	2 EdgeServe Overview
	2.1 Basics and Workflow
	2.2 Metrics
	2.3 Implementation
	2.4 Example Execution

	3 Related Work
	4 Trade-offs in Temporal Synchronization
	4.1 Knob 1. Time Interval for Message Matching
	4.2 Knob 2. Down-sampling
	4.3 Knob 3. Compute Placement
	4.4 Knob 4. Lossy Compression

	5 Experiments: Multi-Camera Tracking
	5.1 Hardware Setup
	5.2 Software Setup
	5.3 Metrics and Ground Truth
	5.4 Centralized Compute
	5.5 Distributed Edge Cluster

	6 Conclusion
	References

